557 research outputs found

    Feature Selection via Coalitional Game Theory

    Get PDF
    We present and study the contribution-selection algorithm (CSA), a novel algorithm for feature selection. The algorithm is based on the multiperturbation shapley analysis (MSA), a framework that relies on game theory to estimate usefulness. The algorithm iteratively estimates the usefulness of features and selects them accordingly, using either forward selection or backward elimination. It can optimize various performance measures over unseen data such as accuracy, balanced error rate, and area under receiver-operator-characteristic curve. Empirical comparison with several other existing feature selection methods shows that the backward elimination variant of CSA leads to the most accurate classification results on an array of data sets

    Neural network modeling of memory deterioration in Alzheimer's disease

    Get PDF
    The clinical course of Alzheimer's disease (AD) is generally characterized by progressive gradual deterioration, although large clinical variability exists. Motivated by the recent quantitative reports of synaptic changes in AD, we use a neural network model to investigate how the interplay between synaptic deletion and compensation determines the pattern of memory deterioration, a clinical hallmark of AD. Within the model we show that the deterioration of memory retrieval due to synaptic deletion can be much delayed by multiplying all the remaining synaptic weights by a common factor, which keeps the average input to each neuron at the same level. This parallels the experimental observation that the total synaptic area per unit volume (TSA) is initially preserved when synaptic deletion occurs. By using different dependencies of the compensatory factor on the amount of synaptic deletion one can define various compensation strategies, which can account for the observed variation in the severity and progression rate of AD

    Complementarity of dark matter detectors in light of the neutrino background

    Get PDF
    Direct detection dark matter experiments looking for WIMP-nucleus elastic scattering will soon be sensitive to an irreducible background from neutrinos which will drastically affect their discovery potential. Here we explore how the neutrino background will affect future ton-scale experiments considering both spin-dependent and spin-independent interactions. We show that combining data from experiments using different targets can improve the dark matter discovery potential due to target complementarity. We find that in the context of spin-dependent interactions, combining results from several targets can greatly enhance the subtraction of the neutrino background for WIMP masses below 10 GeV/c2^2 and therefore probe dark matter models to lower cross-sections. In the context of target complementarity, we also explore how one can tune the relative exposures of different target materials to optimize the WIMP discovery potential.Comment: 13 pages, 12 figures, 3 table

    Divergence of Dipole Sums and the Nature of Non-Lorentzian Exponentially Narrow Resonances in One-Dimensional Periodic Arrays of Nanospheres

    Full text link
    Origin and properties of non-Lorentzian spectral lines in linear chains of nanospheres are discussed. The lines are shown to be super-exponentially narrow with the characteristic width proportional to exp[-C(h/a)^3] where C is a numerical constant, h the spacing between the nanospheres in the chain and a the sphere radius. The fine structure of these spectral lines is also investigated.Comment: 9 pages, 4 figure

    Refractive-index sensing with ultra-thin plasmonic nanotubes

    Full text link
    We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultra-thin metal shell. The few-nm thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure-of-merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits superior sensitivity and comparable figure-of-merit

    Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation

    Full text link
    The plasmon oscillations of a metallic triaxial ellipsoid nanoparticle have been studied within the framework of the quasistatic approximation. A general method has been proposed for finding the analytical expressions describing the potential and frequencies of the plasmon oscillations of an arbitrary multipolarity order. The analytical expressions have been derived for an electric potential and plasmon oscillation frequencies of the first 24 modes. Other higher orders plasmon modes are investigated numerically.Comment: 33 pages, 12 figure

    Coupled surface polaritons and the Casimir force

    Full text link
    The Casimir force between metallic plates made of realistic materials is evaluated for distances in the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive a simple analytical estimate of the Casimir force at short distances. We recover the result known for Drude metals without absorption and compute the correction for weakly absorbing materials.Comment: revised version submitted to Phys. Rev. A, 06 November 200

    Calculations on the Size Effects of Raman Intensities of Silicon Quantum Dots

    Get PDF
    Raman intensities of Si quantum dots (QDs) with up to 11,489 atoms (about 7.6 nm in diameter) for different scattering configurations are calculated. First, phonon modes in these QDs, including all vibration frequencies and vibration amplitudes, are calculated directly from the lattice dynamic matrix by using a microscopic valence force field model combined with the group theory. Then the Raman intensities of these quantum dots are calculated by using a bond-polarizability approximation. The size effects of the Raman intensity in these QDs are discussed in detail based on these calculations. The calculations are compared with the available experimental observation. We are expecting that our calculations can further stimulate more experimental measurements.Comment: 21 pages, 7 figure
    corecore